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VARTATIONAL FORMULATION OF THE PRgBLEM
OF RETAINED VISCOPLASTIC OIL

V.M. ENTOV and S.V. PAN'KO

A variational formulation is given for the problem of determining the
limiting equilibrium of retained viscoplastic oil during its displacement
with water from a stratified bed. It is shown that the basic approximation
of the formulation admitting of an effective solution by the methods of

the plane problem of non-linear filtering /1-5/ follows naturally from

the variational formulation proposed, provided that the class of functions
in which the solution is sought is restricted. Some estimates of the volume
of the bed from which the oil is displaced are obtained on the basis of

the variational formulation.

1. we consider the problem of displacing viscoplastic oil with water from an inhomoge-
neous stratified bed of constant thickness H, whose permeability k% () is a monotonically
decreasing function of the 2z coordinate measured from the bottom towards the top of the bed
(both the bottom and top of the bed are impermeable). We shall assume that the region D under
consideration is bounded by a cylindrical surface I perpendicular to the plane z=0. The
pressure p, independent of 3z, p = P (r, y), is specified on the part 2, of the surface (the
feed surface) which is, generally speaking, multiconnected, and the remaining part of the
boundary EQ is impermeable. At the final stage only water moves within the bed, having
displaced the oil from wherever the water pressure gradient exceeds the local value of the
limiting gradient for the oil & (z). Henceforth, we shall assume that the relation k (z) G® (z) =
koGo? = C = const holds for viscoplastic oils.

When such a formulation corresponding to washing the bed layer by layer is used, the bed
is obviously divided into two regions which we shall call the region of flow and the region
of retained oil, and characterized by the fact that in the first region w >0, (2, y,2) & D,,
while in the second region w =0, (z,y,2) & D,, where w is the filtration rate. By virtue
of the assumption of a monotonic decrease in the permeability from the bottom towards the top
of the bed, the retained oil will be distributed above the zone of flow along each vertical.
We shall wite the equation of the interface between the stream of water and retained oil in
the form 2z = h(x,y), putting formally A = 0 at the points where the retained oil occupies
the whole thickness of the bed and h = H the points where no retained oil is present and the
whole thickness is occupied only by the flow of water. The function &k (z,y) is uniquely
defined in a plane region A cut by the surface Z in the plane 2z = 0. The region A
separates into three, mutually non-intersecting subregions

A=A U AU A
h=H@ yncd; O<h<<H(z y)e Ay h=0(2,y) = A,
The equations of motion have, for the present scheme, the form /1l/
W= —{k )V, VP >6G @), (2,5, 2) = Dy; divw =0 (1.1)
w=0, |Vp | < 6G), (z,4.5) €D, p = const
Therefore the problem reduces to that of finding a solution of the equation
div (k (z) grad p) = 0 (1.2)

in the region of water flow D, satisfying the condition of impermeability at the parts of the
bottom and top adjacent to the region of flow at the boundary Zq'

Oploz =0, z=0(, =M Ubdp z=Hz, p= (1.3)
Oplon =0 (z,y,2) = 2,

and the conditions at the unknown oil-water interface
Gp/on =0, | Vpl=G@)z2=nr(r,y), (z,y)=A (1.4)

In addition, the solution must take known values at the feed surface Z,.

We shall show that the initial problem admits of the variational formulation. Let us
consider the functional
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h(x, ¥}
J=_;..SS S [k (2)| Vp |2 — koGe?] dz dz dy {1.5)

& o

and compute its first variation when p{z,y, z) and A (z,y) are varied. We can do this in
two ways. If we assume that the function p (z,y,2) is defined over the whole layer A x [0, H]
and is continued smoothly to the region containing the retained oil 2>k (z,y), then for
1fixed p(x, y,3) we are interested in varying the upper limit of the integral and obviously
ave

87 =3 {{ 16(2) ¥ — KuGo¥lumnie, S Az dy — (1.6)
Ay
A

%, V)
SS S Y (k (z) Vp) bp dz dz dy + SSS k(2) 22 6pdS
A [}

where O0p and 6k are independent variations.

We can, however, assume that the function p(zy,2 1is defined only for 0<:z< &(z, y).
Then, varying &k{z, y) is invariably connected with varying p (=, y,2), and using the formula for
varying the integral with variable integration limits /6/ we have

6]=—-SS § V (kVp) &%p dz dzx dy + SS k(Vpn)dpdS + —;—SS {k(2)| Vp[*—C]8x-ndS (1.6
A0 s )

Here &% and 4x are independent scalar and vector variations defined in D, and § is
the surface forming the boundary of the region of water flow and consisting of parts of the
surface I, sections of the top and bottom of the bed, and of the boundary between the retained
cil and the region of water flow. Assuming that the variation §x (displacement of a point
of the region") is zero at the beoundary of the region D everywhere except at the retained oil
surface zs==h(z,y) where Ox=k8r, we can confirm that relations (1.6) and (1.6') are identical
Clearly, if a pair of functions {h(zx,¥y), p(z, y,2)}; (@, y) = A, 0Lz k gives a solution
to the problem of determining the retained oil (1.1)~(l1.4), then the variation &/ vanishes.
Conversely, from the demand that the variation &J should vanish when the boundary &k and
pressure &8p are varied -arbitrarily, we have
Vk (@) Vp) =0, (z, 5. 5) =D, (1.%)
|Vpl=Gh), dplon =0, 0 <z =h (z, y) < H (z, y) = A,
Opldz =0, z=0, z, A UAsyz=H, z,y)es A

i.e. the problem which was formulated above.

If the boundary & (z,y) of the retained oil is fixed, then the functional transforms
into the additional total potential of dissipation of filtration flow, and the function p {(z,
¥,3) which is a solution of problem (1.7) with condition [Vpl, = G (h) removed, imparts to

it a minimum (see e.g. /5/). We shall denote this function by p,.. The functional J trans-
forms, in the class of functions p,, into a functional of £k (z, ¥)
J [pny )= J* [h] = (1.8)
A A
_}.SSSkgvppdzdzdy_-g-ggSk.,e.,zdzdxdy
- A @

If the surface I, can be separated into two parts, Z;” and 2,7, denoting the entry and
exit of the filtration flow at which the pressure takes constant values of p* and p~, p" >
p~ respectively, then the first integral in formula (1.8) will be equal to @ (p* — p7)/2
where @ is the filtration flow intensity. In general, it is equal to half of the total
intensity N dissipated by the filtration flow (here pu = 1).

The second term of the formula (1.8) is equal to ykG2V, where V_ is the volume of

the region occupied by the moving water. Thus we have
J* [h] = Y, N (h) — Y,CV, (B), C = koGo* {1.9)

From the general properties of the linear filtration flows it follows that the functional

N depends monotonically on h:
NN N A (x,yy =k (2, y)

(for the given values of the pressure at the feed surface, the total dissipation of the filtra-
tion flow increases, provided that the region of filtration expands due to removal of the
impermeable boundary /1, 5/. Clearly, the functional V_ Ikl is also monctonic.

when &k (z,y) is varied, the variation 8J* consists of the variation directly related to
the deformation of the boundary, and the variation caused by the change in the field p,. How-
ever, since the field pn is itself a solution of the variational problem, it follows that the
corresponding first variation becomes zero. We have here
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=—LSB ({Vpu P — G*)=p Shdxdy =

2
SS& [Vp ,w;,ﬁhdxéy——CSS Shdzdy
Se Ae
The condition that the variation 6J* should vanish again yields the following additional
boundary condition:
jVpu | = G (h), z = h (z, y)
which is used to determine the unknown boundary. '
It can be shown that the solution A {z, y) sought furnishes the functional J*[k] with a
maximum on the functions p,, in any case, when the surfaces £ (z,y) are sufficiently close.
Indeed, let the pair {p,(z,y, 2),h, {2, y)} be a solution of the problem. We shall consider
the variation of the retained oil boundary, assuming that
h=h(z.y)+en(z, 9, e20
We take the field
PE* = Do (%, ¥, 2), 0 <z < min{ky, b}
Ph'=Po($yv»ka)» ho<3<kc+m

as the trial pressure field in the deformed region D,. Let py be the true pressure field for
the deformed region. The general property of minimality of the supplementary dissipation
potential on the solutions implies that

(§r@1vp,rav <{{{ k@) vp2pav (1.10)
Dy by

On the other hand, for the trial field we have

hy+-en
7 imyt W=7 tro ] = §§ RGN SO (1.1)
. h.ﬂ Ay 3
WL § renmmp—cees{{rouvme—cos
8™ hyten As

Here A& are the subregions of A, in which the variation g has the corresponding sign.
In the layer hy<z<hg+ en| Vop®| <[ Vpy (5,4, ko) | < G(he) < G (2), so that theintegral on the right-
hand side of the inequality (1.1l) is non~-positive. Therefore, taking into account (1.10) and

{(1.11), we have T < T [pr* K1 < T [py, b
4% Thus the solution of the initial problem reduces to the follow-
ing minimax problem: to find a function & {z,¥) such that the
8 -1 minimum of the integral (1.4) over all admissible p (z,¥y,3)
takes its maximum value.
4 -~ We note that expression (1.9), taking the positiveness
of the integrand in (1.8) into account, yields
2 VIR CIN I CIN [H] {1.12)

Here N [H] is the dissipation intensity for the layer
§ in which water moves along the whole layer thickness (h == H).
Since its value is found from the solution of the standard
linear filtration problem, it follows that the simple estimate (1.12) may turn out to be very
useful. For example, for a flow in a borehole of radius p measured from the rectilinear feed

contour we have

Qo=2HH p—p- =y 2RH (07— p)
o E 1a (Zajp) ! = “TZam)

where &% is the mean layer permeability, and a is the distance between the feed contour and
the borehocle. Then, by virtue of (1.12) we have

pN 2nko Ha? pt— p= \2
Ve Smor <7 In (Za/p) ( aG ) {1.13)

The straight line 1 in the figure corresponds to the estimate (1.13) (for a homogeneous
layer A° =k, and a/p = 10%) We shall see later that the estimate is very approximate.

2. cConsider the minimax problem formulated above, in the class of pressure fields
independent of the coordinate 2z, p = p (z,y). Then we have
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J=~§-S (Vp(z,y)2§k(z)dzdzdy——;~CSShdzdy 2.1
0

A
The requirement that J be minimal for fixed &k (z,y) gives
VIEmRYp@ ) =0 py) =f @y, (2.2)
dp/an=10, (r,y)=Z,; K(h)=§k(z) dz
0
Maximizing now the functional (2.1) with respect toh taking (2.2) into account, we obtain

61=_‘2_SS (K (h)[Vp |2 — k (k) G* (h)] 8k dr dy 2.3)

a

The variation &k is arbitrary for 0<h < H; >0 when h =0, 8h< 0 when h = H.
Thus the condition that J is maximum yields
IVp P =G (), O<h<H; KR(|Vp P =G (h) <0, (2.4)
h =0
| Vo2 —~G*(h) =0, h=H
The problem (2.3), (2.4) is identical with the problem of flnd:.ng the retained oil in
stratified inhomogeneous beds under the assumption that the pressure is distributed hydro-
statically throughout the layer thickness (the intercalations are in perfect contact)
formulated in /1/. The problem reduces to the plane problem of non-linear filtration and,
in a number of cases, has an effective soltuion /1, 2/. The arguments given show that the
corresponding solutjon (h*, p*) gives the functional J a maximum in the class of functions p
independent of z. Thus
Jo = max, min, J < J* = J [h*, p*]

3. Next we shall consider the functional J defined by (1.5) in the class of step func-
tions & (z,y) taking only two different values

h=0,(z,y)E8:; =AN\ A, h=H, (z,y) = A, (3.1)

Here the part I, of the flow region boundary A, coincides with the feed contour T

P
and the fixed impermeable boundary Ty, and the part T, is unknown. We have

H
J=Jl=-;—-SSS[k(z)|Vp|2——C] dzdxdy (3.2)

Ay O
Constructing the variation §J, we obtain
o
5Jy=— SS S V (k (z) Vp) 6*pdz dx dy +-
Ay O

H
S Sk(z) 9p G*pdzdl—{—-—SnﬁxS [k (z)| Vp — Cl dz dl
r,ur o Ty
Equating the variation &J, to zero, we have

SV(k @) Vp)dz=0, (r,y)=h; p=f(z.y) (YT, (3.3)

1 2 A
k@ (VP —61dz=0, =£=0, @@yehUTl,

o3l ©

If the pressure specified on the feed contour is independent of 2z, then problem (3.3)
admits of the solution p =p (z,y), and as a result we arrive at the boundary value problem

Ap =0, )= pE =19 @yH=sTh (3.4)
apldn =0, (z,y) =T,
| Vp |2 = C/k® dplon = 0, (z,y) =T,
Here we have the well-known plane formulation of the problem on retained oil in homogen-
eous layers /3, 4, 6/, which can be solved efficiently using the jet theory. Since the class

of admissible functions & (z,y) is restricted in the corresponding variational formulation,
it follows that the solutions obtained yield lower estimates for the functional J on the "true

solution” J>=7 (3.5
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Relation (3.5) can also be used to estimate the unknown values of the flushed volume of
the layer V, as was done in Sect.l. Using (1.9) and (3.5) we obtain

V,=(N —2J)C1 < C* (Np— 2J}) = CU (Np — N,) + V, = V* (3.6)

Here Np denotes the efficiency with the same geometry, a given pressure drop and moticn
following Darcy's law (G ==0), N; is the dissipation efficiency for a flow with the formation
of retianed oil blocks, in the framework of the plane problem (3.4), ¥V, is the volume of the
flushed zone computed under the same assumptions as in the case of the plane problem.

Since a large reserve of available solutions exists corresponding to the two~dimensional
formulation (3.4) /3, 4, 7, 8/, it follows that ¥, and ¥, can be easily computed in explicit
form. Thus, the reguired solution for the flow discussed above, moving from a single boxehole
to the rectilinear feed contour was given in /7, 8/. The relation V*(Ap/e6) computed with
help of this solution is depicted by curve 2 in logarithmic coordinates.

According to (3.6) the relation yields an upper estimate for the volume of the flushed
zone. 1In the present case it can be directly confirmed how approximate the estimate (3.6) is.
The crux of the matter is that the example chosen refers to the class of flows for which the
plane formulation yields an exact solution of the three-dimensional problem /1/. For this

reason it is easy, in this case, to compute the exact volume of the flushed zone V, using
+ha oams mtwandey roanetvucted anlntiasan /'l as Curve 3 in the fioure shows the corresnond-

the same, already construcied golulion g, Lurve Lhe Tigure show correspona

ing result. We see that in the basic domaln of parameter variation the estimate (3.6) exceeds
the exact value by a factor of approximately 2.
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Then the boundaries I'; between the regions Aj,; and A; and the continuous pressure field
p{z, ¥, 2) will have to be determined. We shall restrict ourselves to two-dimensional fields

p(z, y). Requiring a minimum of the functional

in p and a maximum in the possible configurations of the boundaries TI;, we arrive at the

problem
8°p,19z% + @p,loy® = 0, (z,y) = A,
[ L % ap, O R apJ'H Lo e\ e
i M e N L LA
h
)
k= S k(z)dz
¢

il (3~ 2 e (2]
Clhm—hp). () ET;
p=fy (x,nNe Fp; dplon = 0, (z, ne Pq

The case of a two-dimensional pressure field and a step function & {z,y) considered,

corresponds to the appropriate formulation of the problem on retained oil in stratified bed
disucssed /9/. However, the condition of limit egquilibrium at the boundaries T; obtained

above from the general variational formulation, differs from that formulated in /9/ and based
on physical considerations.
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ON THE JOINT APPLICATION OF CARTESIAN AND BIPOLAR COORDINATES TO
SOLVE BOUNDARY VALUE PROBLEMS OF POTENTIAL THEORY AND ELASTICITY THEQRY"

V.S. PROTSENKC and A.I. SOLOV'EV

Equations are obtained that connect harmonic functions with separated
variables in Cartesian and bipolar coordinates. These equations can be
used to investigate a number of new boundary value problems of potential
theory and elasticity theory for domains bounded by Cartesian and bipolar
coordinate system coordinate lines.

1. cConsider a plane domain whose boundary is formed by two intersecting circles. The
solution of internal boundary value problems for such domains (circular cresents) is found in
bipolar coordinates a«, f defined by the relations (2 > 0) [1]

r= ch;:!—l:osﬁ’ b= chis.':fms (- 00 Lol 00, — L P L) (1.9

The arcs of the circles forming the circular cresent are the coordinate lines f = const,
and pass through the point z = o-a,y = 0. The quantity P is measured by the angle between the
tangent to the arc at the point z =4, y =0 and the segment (-—a,a) of the z axis correspond-
ing to the value § = 0. Within the domain under consideration the coordinate @ varies between
the limits —oo and oo. Particular solutions of the Laplace equation in bipolar coordinates,
obtained by separation of variables and bounded as « —» #4-00, have the following form

A chAp - chAp N
€08 ashlﬁ' sin ashkﬁ (— oo <A < o)
Theorem 1. The following equations hold for —an<<f <<mn
shxgg“?“’ga: S C(x,r)shrﬁg"?““gdz (1.2)
sinkz A sinto
chhy c?s Ax _ cos Aa — S € (. 7)ch 1B c{.asm
sin Ax 0 A sinte
Ch1) = o 2D (4 — v, 2; 2ika) =

e ea® (1 + iT, 2; — 2ika)

The last identity follows from the Kummer transformation /2, 3/ for the degenerate hyper-
geometric function.

The boundary value problems for a c¢resent domain containing an infinitely remote point
are solved conveniently in bipolar coordinates ao. ¢

asho asing
ha—coss * I T he—coss
(—oolalx, —aowne >0

The quantity ¢ is measured by the angle between the tangent to the arc at the peoint r = g,

y =0 and the ray (a, ) on the z axis corresponding to the value ¢ = 0,

T ===
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