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VARIATIONAL FORMU~TION OF THE PROBLEM 
OF RETAINEB VIS~OP~ST~~ OIL* 

V.M. ENTOV and S.V. PAN'KO 

A variational formulation is given for the problem of determining the 
limiting equilibrium of retained viscoplastic oil during its displacement 
with water from a stratified bed. It is shown that the basic approximation 
of the formulation admitting of an effective solution by the methods of 
the plane problem of non-linear filtering /l-S/ follows naturally from 
the variational formulation proposed, provided that the class of functions 
in which the salution is sought is restricted. Some estimates of the volume 
of the bed from which the oil is displaced are obtained on the basis of 
the variational formulation. 

1. We consider the problem of displacing viscoplastic oil with water from an inhomoge- 
neous stratified bed of constant thickness pi, whose permeability k(z) is a monotonically 
decreasing function of the z coordinate measured from the bottom towards the top of the bed 
(both the bottom and top of the bed axe impermeable). We shall assume that the region Dunder 
consideration is bounded by a cylindrical surface Z perpendicular to the plane z -0. The 
pressure p, independent of L, p = P (z,y), is specified on the part 2, of the surface (the 
feed surface) which is, generally speaking, multiconnected, and the remaining part of the 
boundary x, is impermeable. At the final stage only water moves within the bed, having 
displaced the oil from wherever the water pressure gradient exceeds the local value of the 
limiting gradient for the oil G(z). Henceforth, we shallassumethatthe relation k (z)Ga(z) = 
k,Gozr C = const holds for viscoplastic oils. 

When such a formulation corresponding to washing the bed layer by layer is used, the bed 
is obviously divided into two regions which we shall call the region of flow and the region 
of retained oil, and characterized by the fact that in the first region UJ > 0, (5, Y, 2) ED,, 
while in the second region IU = 0, (s, y,z)~D,, where w is the filtration rate. By virtue 
oftheassumption of a monotonic decrease in the permeability from the bottom towards the top 
of the bed, the retained oil will be distributed above the zone of flow along each vertical. 
We shall wite the equation of the interface between the stream of water and retained oil in 
the form z = h (2, y), putting formally h = 0 at the points where the retained oil occupies 
the whole thickness of the bed and h = H the points where no retained oil is present and the 
whole thickness is occupied only by the flow of water. The function h (I, y) is uniquely 
defined in a plane region A cut by the surface 2 in the plane z = 0. The region A 
separates into three, mutually non-intersecting subregions 

A = A, l_J An U As 

11 = H (2, y) E AI; 0 <h <H (2, y) E AZ; h = 0 (2, y) E Aa 

The equations of motion have, for the present scheme, the form /l/ 

w = -(k (z)irl) Y'p, I vp 1 > G (z), (5, y, z) ED,; div w = 0 (2.1) 

W 5s 0, I TP I < G (21, fs, y, z) E II,, p = eonst 
Therefore the problem reduces to that of finding a solution of the equation 

div (k (z) grad p) = 0 (1.2) 

in the region of water flow D,,satisfying the condition of impermeability at the parts of the 
bottom and top adjacent to the region of flow at the boundary =; 

apih = 0, z = 0 (.2, 9)~ A, IJ A,; z = H (CC, g) E r (1.3) 
dpian = 0 (5, y, 2) E Z, 

and the conditions at the unknown oil-water interface 

8pian = 0, 1 T/J I = G (z); z = h (2, y), (cc, y) E A (1.4) 
In addition, 
We shall show 

the solution must take known values at the feed surface 2,. 
that tbe initial problem admits of the variational formulation_ Let us 

consider the functional 
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J=G-ss s lk (4 I QP I” - k&&*1 dz dx dy 
J. 0 

(1.5) 

and compute its first variation when p f&y, z) and h fs* Yl are varied. We can do this in 
two ways. If we assume that the functian p(z, y,z) is defined over the whole layer A x IO,Hl 
and is continued smoothly to the region containing the retained oil z >h(x, y), then for 
fixed p(s, y,n) we are interested in varying the upper limit of the integral and obviously 
have 

where 6p and 6h are independent variations. 
We can, however, assume that the function p(z,y,z) is defined only for O<z< h(z,y). 

Then, varying h(a,y) is invariably connected with varying p(~,g,r) , and using the formula for 
varying the integral with variable integration limits /6/ we have 

h 

6J=- 
sss 

V(kVP)~P~d+&-+ k(Vpn)(ipdS + + -CC]bx.ndS 
A 0 

ss 
s 

(1.6’) 

Eere S*p and 8x are independent scalar and vector variations defined in D, and s is 
the surface forming the boundary of the regian of water flow and consisting of parts of the 
surface Z, sections of the top and bottom of the bed , and of the boundary between the retained 
oil and the region of water flow. Assuming that the variation 8x (displacement of a point 
of the region") is zero at the boundary of the region D everywhere except at the retained oil 
surface s = h(r, y) where ‘6x = k8h, we can confirm that relations (1.6) and (1.6') axe identichl 

Clearly, if a pair of functions {h(x,y), p(x, y,z)); (z, y)~ A, 0 <z <<h gives a solution 
to the problem of determining the retained oil (l.l)-(l-4), then the variation gJ vanishes. 
Conversely, from the demand that the variation 8.i should vanish when the boundary 6k and 
pressure 8p are varied .arbitrarily', we have 

VP (zf VP) = 0, (2, Y, 2) E D, (1.5) 

1 V p 1 = G (h), ap/lln = 0, 0 < z = h (5, y) < N (x, y) E A, 

8pMz = 0, z = 0, (x, y) cs A1 U A*; z = H, (x, y) E: A, 

i.e. the problem which was formulated above. 
If the boundary h (2, y) of the retained oil is fixed, then the functional transforms 

into the additional total potential of dissipation of filtration flow, and the function P I% 
y,z) which is a solution of problem (1.7) with condition fvp /h = G (k) removed, imparts to 
it a minimum (see e.g. /5/). We shall denote this function by p,,. The functional J trans- 
forms, in the class of functions P,,, into a functional of h(z, y) 

J [p,,, h] = J+ (hj = (1.8) 

If the surface Z, can be separated into two parts, &.+ and &-, denoting the entry and 
exit of the filtration flow at which the pressure takes constant values of p+ and P”? Pf > 

P- respectively, then the first integral in formula (1.8) will be equal to Q (P' - P-)/z 

where Q is the filtration flow intensity. In general, it is equal to half of the total 
intensity N dissipated by the filtration flow (here p = 1). 

The second term of the formula (1.8) is equal to lI,k,G,ZY, where V, is the volume of 
the region occupied by the moving water. Thus we have 

J* fhl = ‘IIN (h) - ‘IICV+ (h), C = k,G$ ii.3 

From the general properties of the linear filtration flows it follows that the functional 
N depends monotonically on h: 

N Ih+l 2 N [h-l, h+ (x, y) 2 h’ (x. y) 

(for the given values of the pressure at the feed surface, the total dissipation of the fiitra- 

tion flow increases, provided that the region of filtration expands due to removal of the 
impermeable boundary /l, 5/. Clearly, the functional V,lh) is also monotonic. 

When h(x,y) is varied, the variation 6J* consists of the variation directly related to 
the deformation of the boundary, and the variation caused by the change in the field ph. How- 
ever, since the field ph is itself a solution of the variational problem, it follows that the 
corresponding first variation becomes zero. We have here 
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BJ+=+sj k (I Vph I2 - P)*zh 6h dx dy = 

The condition that the variation &J* should vanish again yields the following additional 

boundary condition: 
I VPt, I = G (h), s = h (s, Y) 

which is used to determine the unknown boundary. 
It can be shown that the solution h(x,y) sought furnishes the functional J* [hl with a 

maximum on the functions ph, in any case, when the surfaces h(z, y) are sufficiently close. 

Indeed, let the pair (p,,(~,y,z), h,(z,y)) be a solution of the problem. We shall consider 
the variation of the retained oil boundary, assuming that 

We take the field 
h = h, (2. Y) -I- q (z, Y), E I& 0 

as the trial pressure field in the deformed region &. Letphbe the true pressure field for 

the deformed region. The general property of minimality of the supplementary dissipation 
potential on the solutions implies that 

(i-10) 

On the other hand, for the trial field we have 

1 [P,,*, hl- Jhhol== ~~‘~kl~~IIV~~*P-C’(~)l~~- (1.11) 

51 :,~~k~z)~,,.,,"..;,),~~ ~~x(.)[l~~A*l~-G'(r)ldr 
A*- 

Here A,* are the subregions of A, in which the variation '1 has the corresponding sign. 

In the layer ho B 2 G A0 -+ erll VPA* I< I % (2, Y, Ad if G (Add G (m), so that theintegral on the right- 
hand side of the inequality (1.11) is non-positive. Therefore, taking into account (1.10) and 
(l.ll), we have 

I* [Al <J IPh*,hl< J b,,,. &I 

Thus the solution of the initial problem reduces to the follow- 
u ing minimaxproblem: to find a function h(z, y) such that the 

minimum of the integral (1.4) over all admissible P(z,y,z) 
takes its maximum value. 

We note that expression (1.9), taking the positiveness 
of the integrand in (1.8) into account, yields 

(1.12) 

Here NW1 is the dissipation intensity for the layer 
in which water moves along the whole layer thickness (b sfjl). 
Since its value is found from the solution of the standard 

linear filtration problem, it follows that the simple estimate (1.12) may turn out to be very 
useful. For example, for a flow in a borehole of radius p measured from the rectilinear feed 
contour we have 

2&H 
Qo=- 

p+ - p- N _ kkoH ipT- P-P 
In(2afp) ’ - - 1 P n CWP) 

where li" is the mean layer permeability, and a is the distance between the feed contour and 
the borehole. Then, by virtue of (1.12) we have 

(1.13) 

layer 
The straight line f in the figure corresponds to the estimate (1.13) (for a homogeneous 
kc = k, and a/p = 103) We shall see later that the estimate is very approximate. 

2. Consider the minimax problem formulated above 
independent of the coordinate 

, in the class of pressure fields 
z. p = p (5, y). Then we have 
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J=+i\ 
h’ 
(Vp(x,y),2~k(r)drdxdy-_;c~jhdxdy 

0 A 

(2.1) 

The requirement that J be minimal for fixed h(z, y) gives 

V (K (9 VP (2, Y)) = 0; P (r, Y) = f, (5, Y) E 2, 

apldn = 0, (27 Y) E 2,; K(h)=ik(z)dz 
0 

(2.2) 

Maximizing now the functional (2.1) with respect tohtaking (2.2) into account,weobtain 

6J=+~~ [K (h) 1 Vp /* -k (h) ff (h)] 6h dx dy 
s 

(2.3) 

The variation 6h is arbitrary for 0 < h < H; 6h > 0 when h = 0, 6h < 0 when h = H. 
Thus the condition that J is maximum yields 

I Vp I* = 6% (k), 0 < h < H; K (h)(l Vp I* - GP (h)) < 0, 
h=O 

(2.4) 

I VP IP - G’ (h) 2 0, h = H 

The problem (2.3), (2.4) is identical with the problem of finding the retained oil in 
stratified inhomogeneous beds under the assumption that the presiure is distributed hydro- 
statically throughout the layer thickness (the intercalations are in perfect contact) 
formulated in /l/. The problem reduces to the plane problem of non-linear filtration and, 
in a number of cases, has an effective soltuion /l, 2/. The arguments given show that the 
corresponding solution (h*,p*) gives the functional J a maximum in the class of functions p 
independent of z. Thus 

JO = ma& min, J < J* = J [h*, p*l 

3. Next we shall consider the functional J defined by (1.5) in the class of step func- 
tions h (z, y) taking only two different values 

h = 0, (5, y) E A, = A \ Al; h = H, (x, y) E A, (3.1) 

Here the part r,, of the flow region boundary A1 coincides with the feed contour rP 
and the fixed impermeable boundary rp, and the part r1 is unknown. We have 

J=J+si [k (z) ( Vp I2 - Cl d.z dx dy (3.2) 

Constructing the variation 6J, we obtain 

~J,=--SS~V(k(I)Vp)b*pd~dxdy+ 
At 0 H 

s s 
k(.)$6*pdrdl++Rr{ [k (z) 1 Vp (* - Cl dz dl 

r.ur, 0 1’, 0 

Equating the variation 6J, to zero, we have 

i V (k (z) Vp) dz = 0, (t, y) E AI; P = f (~7 Y), (5, Y) = r~ 
0 
H 

s k(z)[[VpI*-GG?]dz=O, g=O, (x,Y)E~~ u r, 
0 

(3.3) 

If the pressure specified on the feed contour is independent of z, then problem (3.3) 
admits of the solution p =p(s, y), and as a result we arrive at the boundary value problem 

Ap = 0, (2, Y) E A,; P (2, Y) = f (2, Y), (~7 Y) E rp (3.4) 

aplan = 0, (2, y) E rq 

1 vp I2 = c/P, 3plc% = 0, (2, y) E rl 
Here we have the well-known plane formulation of the problem on retained oil in homogen- 

eous layers /3, 4,, 6/, which can be solved efficiently using the jet theory. Since the class 

of admissible functions h(z, y) is restricted in the corresponding variational formulation, 
it follows that the solutions obtained yield lower estimates for the functional J on the "true 
solution" J>J, (3.5) 
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Relation (3.5) can alsobe used to estimate the unknown values Of the flushed volume Of 

the layer V+ as was done in Sect-l. Using (1.9) and (3.5) we obtain 

V, = (N - ZJ) C-’ \< t?’ (ND - ZI,) = C’ (ND - N,) + VI = v* (3.6) 

Here Nn denotes the efficiency with the same geometry, a given pressure drop and moticn 

following Darcy's law {GnmO), N, is the dissipation efficiency for a flow with the formation 

of retianed oil blocks, in the framework of the plane problem (3.4), v, is the volume of the 
flushed zone computed under the same assumptions as in the case of the plane problem. 

Since a large reserve of available solutions exists corresponding to the two-dimensional 
formulation (3.4) /3, 4, 7, 8/, it follows thatN,and V,can be easily computed in explicit 
form. Thus, the required solution for the flow discussed above, moving from a single borehole 
to the rectilinear feed contour was given in f7, 8/. The relation V* (AR/&) computed with 
help of this solution is depicted by curve 2 in logarithmic coordinates. 

According to (3.6) the relation yields an upper estimate for the volume of the flushed 
zone. In the present case it can be directly confirmed how approximate the estimate (3.6) is. 
The crux of the matter is that the example chosen refers to the class of flows for which the 
plane formulation yields an exact solutian of the three-dimensional problem fl/. For this 
reason it is easy, in this case, to compute the exact volume of the flushed zone V+ using 

the same, already constructed solution 17, 81_. Curve 3 in the figure shows the correspond- 
ing result. We see that in the basic domain of parameter variation the estimate (3.6) exceeds 
the exact value by a factor of approximately 2. 

Let us now assume that the step function A (2, Y) can take the n -I- l-th given discrete 
value 

h,=O<h,<...<h,< . . . . <h,,=H 

k is, ~1 = hj, (5, Y)~E A, 
Then the boundaries !Jj between the regions h>, and hj and the continuous pressure field 

P (2, YI 2) will have to be determined. We shall restrict ourselves to two-dimensional fields 

P (x* 9). Requiring a minimum of the functional 
h 

J=J&. 
us 

r~(z)~v~~~-~]~z~~~~ 

4 a 
in p and a maximum in the possible configurations of the boundaries E‘I, we arrive at the 
problem 

d2p#3xz + ~~~~~~~2 = 0, (2,~) E Al 

P = f (x, h b, Y) E r,; Wan = 0, h, !4 E r, 

The case Of a two-dimensional pressuse field and a step function A (z,& considered, 
corresponds to the appropriate formulation of the problem on retained oil in stratified bed 
disucssed /9/. However, the condition of limit equilibrium at the boundaries I', obtained 
above from the general variational formulation, differs from that formulated in /9/ and based 
on physical considerations. 
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ON THE JOINT APPLICATION OF CARTESIAN AND BIPOLAR COORDINATES TO 
SOLVE BOUNDARY VALUE PROBLEb-lS OF POTENTIAL THEORY AND ELASTICITY THEORY* 

V.S. PRGTSRNKO and A.I. SOLOV'EV 

Equations are obtained that connect harmonic functions with separated 
variables in Cartesian and bipolar coordinates. These equations can be 
used to investigate a number of new boundary value problems of potential 
theory and elasticity theory for domains bounded by Cartesian and bipolar 
coordinate system coordinate lines. 

1. Consider a plane domain whose boundary is formed by two intersecting circles. The 
solution of internal boundary value problems for such domains (circular cresents) is found in 
bipolar coordinates a, 8 defined by the relations (a > 0) [II 

usha 
x= Y 

llsing 
cha+eos@ =_,,a+cos8(-00<a<00,--n,<B~) (1-l) 

The arcs of the circles forming the circular cresent are the coordinate lines fi = const, 

and pass through the point x = +a, y = 0. The quantity $ is measured by the angle between the 
tangent to the arc at the point 5 = a, y = 0 and the segment (-a,a) of the x axis correspond- 
ing to the value $ = 0. Within the domain under consideration the coordinate a varies between 
the limits -co and 0~. Particular solutions of the Laplace equation in bipolar coordinates, 
obtained by separation of variables and bounded as a-&-w, have the following form 

Theorem 1. The following equations hold for -Tc < fi < n 

C&t) =&- e-""cD(i - iz, 2; 2iha)s 

ba 
sh C&Q (I _t it, 2; - 2&a) 

The last identity follows from the Kummer transformation 12, 31 for the degenerate hyper- 

geometric function. 
The boundary value problems for a cresent domain containing an infinitely remote point 

are solved conveniently in bipolar coordinates a. cI 

naha nrinc 
x= cha-toss ’ !f= eha-cos: 

(-ca<a<?o,--s<u<s,'a>OI 

The quantity o is measured by the angle between the tangent to the arc at the point x = a, 

y = 0 and the ray (a, m) on thexaxis corresponding to the value (5 = 0. 
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